
HW 6 SOLUTIONSProblem 1HF Chapter 4, problem 24Our e�e
tive potential here isVe� = �kr + �r2 + �0r2 (1)where �0 � l22m . We 
an write this asVe� = �kr + �0r2�2; �2 � 1 + ��0 (2)Now, we would like to get rid of the � in (2) to obtain the EOM for theKepler problem, whose solution we know. To do this, de�ne �0 � ��, so that�0�2 = (mr2 _�)22m �2 = (mr2 _�0)22m � l022m (3)Then we have the Kepler problem in terms of �0; l0 so we just read o� thesolution: pr = 1 + �
os�0; p � l02mk = l2�2mk (4)= 1 + �
os(��) (5)So our de�nition of � agrees with the text's, and we have found it equal toq1 + ��0 .Now, a

ording to (5), r attains it's minimum (perihelion) at � = 0; 2�� ,so the pre
ession angle �� after one orbit, whi
h is the di�eren
e between2� and the a
tual angular distan
e traveled between perihelia, is�� = 2� � 2�� = 2�� (�� 1) (6)The time it takes to pre
ess this mu
h is the period, given by eqn (4.60),� = 2�qm=k( p1� �2 )3=2 = 2� (�l)3mk2(1� �2)3=2 (7)so the rate of pre
ession is!pre = ��� = �� 1�4 mk2(1� �2)3=2l3 : (8)1



Problem 2a)The equation for the hyperboli
 orbits in 
artesian 
oordinates isp = �qx2 + y2 + �x (9)whi
h 
an be rearranged to giveyx = �r�1 + (px � �)2: (10)We are looking for the straight line whi
h is the limit of this 
urve as x (andy) go to in�nity. Substituting y = mx + b into (10) and taking the limit asx goes to in�nity yields m = �p�2 � 1 (11)To �nd the inter
ept we demand that the di�eren
e between our line y =�p�2 � 1x + b and the hyperbola y = �xq�1 + ( px � �)2 go to 0 as x ap-proa
hes in�nity. We Taylor expand this di�eren
e in the small quantity1x : 0 = �p�2 � 1x+ b� xr�1 + (px � �)2 (12)= �p�2 � 1x + b� xq�1 + p2x2 � 2� px + �2 (13)= �p�2 � 1x+ b� xp�2 � 1q1 + 1�2�1( p2x2 � 2� px) (14)� �p�2 � 1x+ b� xp�2 � 1(1 + 12 1�2�1( p2x2 � 2� px)) (15)= b� �pp�2�1 +O( 1x) (16)so taking the limit as x goes to in�nity yieldsb = � �pp�2 � 1 (17)so our line is y = �p�2 � 1x� �pp�2 � 1 : (18)b)At in�nity, the a
tual hyperboli
 orbit of the parti
le and the asymptotes
oin
ide, so we 
an evaluate the angular momentum l at in�nity to getl = jr1 � p1j = �r1v1sin� = �bv1 (19)2



where we used elementary trigonometry to see that b = rsin� for the asymp-tote everywhere, and hen
e for the hyperbola at in�nity.Then, using v1 = q2E=� and l = q�k22E (�2 � 1) we haveb = l�v1 = k2Ep�2 � 1 (20)Problem 3a)We 
ompute dAdt in 
ylindri
al basis ve
tors:dAdt = dpdt � L� �kdr̂dt (21)= � kr2 r̂� lẑ� �k _��̂ (22)= k( lr2 � � _�)�̂ (23)= 0: (24)where in the �rst equality we used the fa
t that L is 
onstant, in the se
ondequality we used dpdt = � kr2 r̂ and dr̂dt = _��̂, and in the last equality we usedthe de�nition of l.b)Assume that perihelion (
losest approa
h) o

urs along the positive x-axis.Then, using that at perihelion p = l=ry, we evaluate A:A = lry� lz� �kx = �k( l2�kr � 1)x = �k�x (25)so A has magnitude �k� and points in the dire
tion of the perihelion. It'sexisten
e is thus seen to be linked with the fa
t that the oribts in the Keplerproblem are 
losed, whi
h is due to an extra symmetry pe
uliar to the Keplerproblem (and the isotropi
 harmoni
 os
illator, the other system with 
losedorbits).Problem 4a)Using r = (R
os�; Rsin�; z) we haveL = m2 _r2 + k2r2 = m2 (R2 _�2 + _z2) + k2(R2 + z2) (26)3



b)We have �L� _z = pz = m _z ) _z = pzm (27)�L� _� = p� = mR2 _� ) _� = p�mR2 (28)so H = H(z; �; pz; p�) = p2z2m + p2�2mR2 + k2(R2 + z2) (29)and so Hamilton's equations are _z = pzm (30)_� = p�mR2 (31)_pz = �kz (32)_p� = 0 (33)Problem 5a)Using p1� x � 1� 12x givesL � �m
2 + m2 _x2 � e� + e
 _x �A (34)whi
h up to the irrelevant 
onstant term �m
2 (whi
h represents the restmass) is the same as our nonrelativisti
 lagrangian.b)We have pi = �L� _xi = m _xiq1� _x2
2 + e
Ai (35)so in terms of ve
tors m _xq1� _x2
2 = p� e
A: (36)Dotting (36) with itself yields(p� e
A)2 = m2 _x21� _x24



whi
h 
an be solved for _x2, yielding_x2 = 
2(p� e
A)2m2
2 + (p� e
A)2 : (38)Combining (36) and (38) yields _x in terms of p:_x = q1� _x2
2m (p� e
A) (39)= 1mvuut1� (p� e
A)2m2
2 + (p� e
A)2 (p� e
A) (40)= 1mvuut m2
2m2
2 + (p� e
A)2 (p� e
A) (41)so we 
an now write the Hamiltonian, substituting our admittedly unwieldyexpression (41) for _x:H = p � _x� L (42)= vuut 
2m2
2 + (p� e
A)2 (p2 � e
A � p) +m
2vuut m2
2m2
2 + (p� e
A)2 + e��em
vuut m2
2m2
2 + (p� e
A)2 (A � p� e
A2) (43)= 1qm2
2 + (p� e
A)2 [
(p� e
A)2 +m2
3℄ + e� (44)= rm2
4 + 
2(p� e
A)2 + e� (45)where we have skipped a few steps of algebrai
 manipulation between equal-ities.Now we wish to �nd Hamilton's equations. This will be ugly. We'll dothis in ve
tor notation (i.e. we'll write �H�x to stand for the ve
tor whose ith
omponent is �H�xi ), we'll make use of the ve
tor identity r(A �B) = A�(r�B) + (A � r)B +A$ B as well as Maxwell's Equations E = �r� � 1
 �A�t ,B = r�A, and we'll skip some algebra. We have_p = ��H�x (46)5



= �
22 r(�2e
 p �A+ e2
2A2)qm2
4 + 
2(p� e
A)2 � er� (47)= 
2[2e
 (p�B+ (p � r)A)� 2 e2
2 (A�B+ (A � r)A)℄qm2
4 + 
2(p� e
A)2 � er� (48)and now that we're done taking derivatives we 
an eliminate p for _x, yielding(eventually) _p = [2me
 ( _x�B+ ( _x � r)A)℄2m � er� (49)whi
h, when 
ombined with_p = maq1� _x2
2 + m
2(q1� _x2
2 )3 ( _x � a) _x + e
(�A�t + ( _x � r)A) (50)(whi
h is obtained by time di�erentiating (36)), yields, eventually,mq1� _x2
2 a + m
2(q1� _x2
2 )3 ( _x � a) _x = e(E+ 1
 _x�B) (51)whi
h is the Lorenz for
e law plus an additional 
orre
tion term whi
h ba-si
ally fun
tions to prevent the mass from a

elerating beyond the speed oflight.
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